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µ-Holomorphy conditions in 2D conformal models
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Abstract

Here, we give an explicit study of the µ-holomorphic j -differentials in conformal geometry
and as application in 2D conformal models. Moreover, we rewrite the anomalous conformal Ward
identity as certain kind of a deformedµ-holomorphy condition. Indeed, the conformal Ward identity
is expressed as µ-holomorphy equation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Two-dimensional conformal field theories on Riemann surfaces without boundary are the
relevant models in string theory [1]. Recently, their dependence on the background geometry
has been exploited to obtain effective actions for two-dimensional quantum gravity. This
has led to exciting developments in non-critical string theory [2] and may conceivably shed
some light on the quantization program of highest dimensional gravity.

Most of the study on the subject are concerned with Lagrangian field theories on a
two-dimensional manifold (Σ, g) which are both Weyl and diffeomorphisms invariant at
the classical level [3,4]. The quantization program is carried out by means of diffeomorphism
invariant scheme. In general, however, a Weyl anomaly emerges in this way whose strength
is measured by a real coefficient k; the central charge of the model under consideration, up
to a conventional normalization. The form of such anomaly is universal. The Weyl anomaly
can be eliminated by either (i) constraining the field content of the model so that the central
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charge vanishes as in the case of string theory [3], or (ii) substracting from the effective
action a suitable local counterterm that absorbs the Weyl anomaly at the cost of creating a
diffeomorphism anomaly [5] whose strength is again measured by the central charge k. The
form of such counterterm is also universal. The silent feature of the diffeomorphism anomaly
is that it is chirally split, it is the sum of two terms each of which is the complex conjugate
of the other. This fact is intimately related to the holomorphic factorization property of the
Weyl invariant effective action [6,7] that can be written as

ΓW(µ, µ̄;R0, R0) = Γp(µ;R0)+ Γp(µ;R0), (1.1)

whereR0 is the holomorphic projective connection, i.e. ∂̄R0 = 0 in a reference holomorphic
coordinates system (z, z̄). Γp is called the Polyakov action of the model under consideration
[8]. In this Beltrami parameterization scheme, the metric g can be parameterized as follows:

g = exp(ϕ)ρ0|dz+ µ dz̄|2, (1.2)

where ϕ is the Weyl phase, µ the Beltrami differential characterizing the conformal class
of the metric g, ρ0 the background metric and is needed to write g invariantly.

The action Γp is a most fundamental object. It depends holomorphically on the Beltrami
differential and on the background R0. It satisfies the chiral conformal Ward identity:

sΓp(µ;R0) = kA(C;µ;R0), (1.3)

where s is the nilpotent BRST symmetry’s generator andC = c+µc̄ the combination of the
associated diffeomorphisms parameters ghosts. In this BRST formalism, the holomorphic
projective connection R0 is s-invariant, i.e. sR0 = 0.

In the diffeomorphism Lie algebra formalism, the conformal Ward identity (1.3) expresses
the anomalous break down of the diffeomorphism symmetry [9]:

W2
δΓp

δµ
= −k

12π
L
R0
3 (µ), (1.4)

where W2 ≡ ∂̄ − µ∂ − 2∂µ is the Ward operator and LR0
3 ≡ ∂3 + 2R0∂ + ∂R0 the third

Bol’s operator [10,11] associated to the holomorphic projective connection R0.
The independence of Γp(µ;R0) from ϕ and ρ0 entails that such function depends only

on the background conformal geometry parameterized by the Beltrami differential µ. This
suggests that a natural scheme for the study of two-dimensional conformal field theories
on Riemann surfaces should rely ab initio and exclusively on conformal geometry [12,13].
Moreover, combinations of Polyakov actions can be used to construct explicitly chiral
conformal theories. Then, any Polyakov action may serve as a “classical” action for 2D
quantum gravity in the light cone gauge [8].

2. Complex and projective structures on Σ

Let us consider a Riemann surface Σ equipped with an atlas of compatible complex
analytic coordinates system, i.e. we have complex coordinates zα defined on each patch and
the transition functions fαβ between two patches are holomorphic:

zα = fαβ(zβ). (2.1)
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We may define another atlas of compatible complex analytic coordinates z′α . The transi-
tion functions z′α = f ′

αβ(z
′
α) are again holomorphic. Moreover, if z′α and zβ are related by

holomorphic (local) diffeomorphism they are said to belong to the same complex structure.
However, if the transition functions z′α = fαβ(zβ) are not holomorphic, the two com-
plex structures (zα) and (Z′

α) belong to different atlas. Now, a Riemann surface Σ is a
C∞-differentiable bi-dimensional manifold endowed with a reference complex structure
which is fixed by an analytic complex structure (zα, zα). On this surface, we consider a
Beltrami differentialµ(z, z̄) that induces another complex structure onΣ parameterized by
local coordinates (Zα, Zα). These latters are C∞-diffeomorphisms of the reference vari-
ables (zα) and satisfy, in each map (Uα, zα), the Beltrami equation:

(∂zα − µ
zα
zα
(zα)∂zα )Zα(zα), (2.2)

where µ ∈ C∞(Σ) and |µ| ≺ 1.
For simplicity, we omit the indice α characterizing the map and we write ∂ ≡ ∂zα and

c.c. One can verify that Eq. (2.2) enables us to express the one form of the coordinate Z as
follows:

dZ = λZz (dz+ µ dz̄), (2.3)

with λ ≡ λZz = ∂Z is an integrating factor non-local in µ. The diffeomorphism

z → Z(z, z̄), µ = 0 → µ �= 0, (∂̄ − µ∂)Z = 0 (2.4)

is called a quasi-conformal transformation that becomes conformal forµ = 0. It can be seen
as the transition from the reference conformal structure (µ = 0) to the other one determined
by µ = ∂̄Z/∂Z. The particular case of holomorphic transition functions between two
compatible complex analytic coordinates (z) and (ω) is the projective transition function
which is defined by

z → ω(z), ω ∈ SL(2, C) (2.5)

where SL(2, C) is the Mobius group. The atlas of compatible complex analytic structures
whose transition functions are projective is called a projective atlas.

3. Diffeomorphisms, quasi-conformal, conformal and projective
transition functions on Σ

To characterize such transformations, let us consider the Schwarzian derivative ζz(ω) of
the function ω with respect to z which is defined by [9]

ζz(ω) ≡ ∂2 ln ∂ω − 1
2 (∂ ln ∂ω)2. (3.1)

Then, we have the following properties:
(I) If the transition function z → ω(z, z̄) is any diffeomorphism, then the Schwarzian

derivative ζz(ω) satisfies the equation

(∂2 + 1
2ζz(ω))((∂ω)

−1/2) = 0. (3.2)
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(J) If z → ω(z, z̄) is quasi-conformal; ∂̄ω = µ∂ω then we have

∂̄ζz(ω) = L
ζz(ω)

3 (µ). (3.3)

One can see that Eq. (3.3) is nothing but the µ-holomorphy equation for ζz(ω) [11].
(K) If the diffeomorphism z → ω(z, z̄) is holomorphic (∂̄ω = 0), the Schwarzian

derivative is also holomorphic:

∂̄ζz(ω) = 0. (3.4)

(L) If z → ω(z) is projective, ζz(ω) vanishes:

ζz(ω) = 0. (3.5)

Now, by combining Eqs. (1.2) and (2.3) we express the metric g in terms of isothermal
coordinates (Z):

g = exp(ϕ)|dZ|2 (3.6)

which are the solutions of the Beltrami equation

(∂̄ − µ∂)Z = 0. (3.7)

Moreover, this equation determines Z up to a holomorphic reparameterization Z → F(Z).
Indeed, one can verify the following equation:

(∂̄ − µ∂)F = λ̄(1 − µµ̄)∂Z̄F = 0. (3.8)

Hence, to any given µ one can associate exactly one complex structure which is provided
by solutions of (3.8). Conversly, for given F one can define µ ≡ ∂̄F/∂F and if G is any
holomorphic function of F one has

µ = ∂̄G

∂G
= ∂̄F

∂F
. (3.9)

On the other hand, one can verify that the Schwarzian derivative (3.1) is invariant under
Mobius subgroup of holomorphic diffeomorphisms. However, under a holomorphic diffeo-
morphism z → z′ = f (z), ζz(ω) transforms as

ζz(ω) → (∂f )−2(ζz(ω)− ζz(z
′)). (3.10)

Furthermore, as µ is a true (−1, 1) differential with respect to a conformal change of
coordinates:

µz → µz′ = (∂z′)(∂z′)µz, (3.11)

it is easy to show that Lζ3(µ) and then ∂̄ζz(ω), transform like a true (2,−1) differential.
Thus, Eq. (3.3) is well defined on the Riemann surface Σ (even if the atlas used is not
projective). The same can be verified for Eq. (3.2). Then, for a given Beltrami differential
µ, i.e. a given complex structure, the Schwarzian derivative serves to distinguish between
projective structures.
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4. µ-Holomorphy conditions for j-differentials

Here, we consider the operator

Wj ≡ ∂̄ − µ∂ − j∂µ. (4.1)

A solution fj of the following µ-holomorphy condition:

Wjfj = 0 (4.2)

is called aµ-holomorphic j -differential [1]. Then, each j -differentialfj on any two-dimensional
Riemann surface Σ is related to the operator Wj by the µ-holomorphy equation (4.2).

Moreover, it is easy to verify that, if fj is a µ-holomorphic j -differential, f jj ≡ (fj )
j is

a µ-holomorphic f 2-differential:

Wj2f
j
j = 0. (4.3)

Indeed, by direct calculation, we get

Wj2f
j
j = jfj−1

j Wjfj . (4.4)

Now, let us give some important examples in conformal geometry and 2D-conformal models
for such µ-holomorphy conditions.

4.1. 0-differential

For j = 0, theµ-holomorphy condition (4.2) is reduced to the Beltrami equation satisfied
by a µ-holomorphic 0-differential; a scalar field F(z, z̄):

W0F = 0. (4.5)

Geometrically, the field F parameterizes another complex structure corresponding to a
Beltrami differential µ which is defined by (4.5), as (z, z̄) is a local coordinates system of
the reference complex structure corresponding to µ = 0. In string theory, the field F of
Eq. (4.5) is interpreted as the Wess–Zumino field [9].

4.2. − 1
2 -differential

j = −A/2 defines a µ-holomorphic − 1
2 -differential Ψ (z, z̄) which is a spinor function

satisfying

W−1/2Ψ = 0. (4.6)

The solution Ψ = (∂Z)−1/2 of Eq. (4.6), where Z is a µ-holomorphic 0-differential, is the
inverse of the square root of the conformal factor λ ≡ ∂Z when the metric is parameterized
by a local isothermal coordinates system (Z(z, z̄), Z(z, z̄)) defined by Eq. (2.4).
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Moreover, one can verify that the − 1
2 -differential Ψ = (∂Z)−1/2 satisfies the following

equation:

(∂2 + 1
2ζz(Z))((∂Z)

−1/2) = 0. (4.7)

This determines the Schwarzian derivative of the diffeomorphism z → Z(z, z̄).
On the other hand, it is easy to see that Eqs. (4.6) and (4.7) for the µ-holomorphic

− 1
2 -differential Ψ = (∂Z)−1/2 are compatible with the µ-holomorphy equation (3.3).
To this end, let us rewrite Eqs. (4.6) and (4.7), respectively, as

(∂̄ −h)

(
Ψ

∂Ψ

)
= 0, h11 = −h22 = − 1

2 , h12 = µ and h21 = − 1
2µζz∂

2µ (4.8)

and

(∂̄ − l)

(
Ψ

∂Ψ

)
= 0, l11 = l22 = 0, l12 = 1 and l21 = − 1

2ζz. (4.9)

Hence, compatibility of Eqs. (4.8) and (4.9) is equivalent to the vanishing of the curvature

Rhl = [∂̄ − h, ∂̄ − l], (4.10)

which implies Eq. (3.3).

4.3. 1-differential

The µ-holomorphic 1-differential is a vector field V defined by the µ-holomorphy con-
dition

W1V = 0. (4.11)

The well-known example is the conformal factor λ = ∂Z. Indeed, this later satisfies

W1λ = 0, (4.12)

when the Beltrami equation for Z holds.
Moreover, more generally, it is easy to verify that λj is a µ-holomorphic j -differential

for any real number j , i.e.

Wjλ
j = 0. (4.13)

This latter is deduced fromWjλ
j = jλj−1W1λ. Hence, Eq. (4.6) forΨ = λ−1/2 and (4.12)

for λ are particular cases of (4.13), respectively, for j = − 1
2 and j = 1.

4.4. 2-differential

For j = 2, an example of a 2-differential is the classical energy–momentum tensor
Θzz(z, z̄) ≡ δSC(µ)/δµ, where SC is the classical action of the model under consider-
ation. Indeed, this tensor satisfies the µ-holomorphy condition: W2Θ = 0 which is the
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well-known classical Ward identity of a two-dimensional conformal model. In other words,
aµ-holomorphy condition for a 2-differential is realized, on the functional space of 2D con-
formal field theory, as the kernel of the Ward operator W2. This latter equation expresses
the diffeomorphisms invariance of the classical action of the model.

5. Some deformed µ-holomorphy conditions

The first example of such equations is the compatibility condition (3.3) for the Schwarzian
derivative ζz(ω) of a quasi-conformal transformation. This condition can be rewritten as

W2ζz = ∂3µ (5.1)

which is compatible with the fact that ζz is not a 2-differential with respect to a conformal
change of coordinates (see Eq. (3.10)).

Another important example is the anomalous conformal Ward identity

W2Tzz(z, z̄) = − 1
2k∂

3µ, (5.2)

where Tzz is the energy–momentum “tensor” of an effective two-dimensional conformal
model: Tzz(z, z̄) ≡ (δZcv(µ)/δµ) · Zcv(µ) is the generating connected Green functions of
the vacuum.

Here also, Eq. (5.2) is compatible with the fact that the field Tzz is not conformally
covariant. Indeed, under a holomorphic change of coordinates Tzz transforms as

z → ω(z), Tzz → Tωω = (∂ω)−2(Tzz + 1
2ζz(ω)) (5.3)

Another type of deformed µ-holomorphy condition is given by the following:

W−1C = sµ, (5.4)

which is the BRST transformation of the Beltrami differential µ. However, when the con-
formal gauge [9]

sµ = 0 (5.5)

is considered, the ghost field C becomes a µ-holomorphic 1-differential. Knowing that the
gauge fixing action of the bosonic string is given by

SGF =
∫
Σ

dm bsµ+ c.c., (5.6)

where dm(z) ≡ dz̄ ∧ dz/2i is the measure on the Riemann surface Σ and b is an auxiliary
field, the conformal gauge (5.5) is equivalent to the equation of motion of the field b which
is a non dynamical equation and enables to eliminate the field b from the action.

On the other hand, any projective connectionR onΣ satisfies theµ-holomorphy equation
[14]

∂̄R = LR3 (µ), (5.7)
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which can rewritten as a certain deformed µ-holomorphy condition for the projective con-
nection

W2R = ∂3µ. (5.8)

This equation is also compatible with the fact that R is not a tensor under a holomorphic
change of coordinates

Rωω = (∂ω)−2(Rzz − ζz(ω)) (5.9)

to be compared with Eq. (3.6). This implies that the general solution of the µ-holomorphy
equation (5.8) is given by

Rzz(z, z̄) = ζz(Z)+ fzz(z, z̄), (5.10)

where f is a 2-differential. Moreover, f can be expressed as

f (z, z̄) = λ2Q(Z), (5.11)

where Q is holomorphic in the complex structure (Z, Z̄) : ∂Z̄Q = 0. At the end, we
conclude that the µ-holomorphy condition, in the reference structure, is equivalent to the
holomorphic condition in the complex structure (Z, Z̄).

6. Conclusion and open problems

The construction of j -differentials on a Riemann surfaceΣ enables to get the conformally
covariant objects which are needed to get the model globally defined on Σ . On the other
hand, the transformation

R0 → R, ∂̄R0 = 0 → ∂̄R = LR3 (µ), sR0 = 0 → sR = LR3 (C),

sµ0 = 0 → sµ = (∂̄ − µ∂ + ∂µ)C (6.1)

shed some light on the geometric representation of the BRST operator. Here, in Eq. (6.1),
the BRST operator s plays the same role as the co-bord operator ∂̄ .
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